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In this paper the properties of the generalized Euler-Frobenius

d

polynomial -3344,4;L/are studied. It is proved that its zeroes are separated
pfrenchan stimidy

by a factor q and their asymptotic behavior as + ®) is obtained. as a "
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consequence it is shown that least squares spline approximation on a

i 5

biinfinite geometric mesh is boundable independently of the (local) mesh

ratio g and that the norm of the inverse of the corresponding B-spline Gram

matrix decreases monotonly to 2k - 1 for large q, as (3;5222' o ;
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SIGNIFICANCE AND EXPLANATION

The Euler-Frobenius polynomial Hn plays an important role in the
analysis of cardinal polynomial splines. It has simple, negative zeroes, and
the fact

- +
Tog-1(=1) # 0
allows us to conclude that there exists a unique bounded cardinal polynomial
spline f € s2k v that interpolates prescribed data b € 2“ at integers.
’

The essential properties of cardinal polynomial splines have been later
extended to the more general case of cardinal {-splines, and thereby, by an
appropriate change of variables, to polynomial splines on the biinfinite
geometric mesh

i o
(a)_,» l<gc<=.

The generalized Euler-Frobenius polynomial is in the latter case given by

neifny —— 3
GO T T @ -0, ¢
3=0
j#i

In the report some new characteristics of Hn(';q) are outlined. A
simple but far reaching property is proved: the zeroes are separated by a
factor q. This fact helps us to analyse spline interpolation on the
biinfinite geometric mesh. In particular, it is proved that the least squares
spline approximation is boundable independently of the local mesh ratio gq,

and that the norm of the inverse of the corresponding B-spline Gram matrix

decreases monotonly to 2k - 1 for large q, as q * @, “Acuussion For
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ON THE GENERALIZED EULER-FROBENIUS POLYNOMIAL

Y. Y. Feng' and J. Xozak*

1. Introduction
The exponential Euler polynomial Ah(x:t) played an important role in the analysis of
cardinal polynomial gplines. This is much due to the fact that the spline defined by the
functional relation
¢n(x) o= An(xrl), x e (0,1,
¢n(x + 1) = AQn(x) otherwise ,
vanishes at all integers for particular values of )\, the zeroes of the Euler-Frobenius
polynomial nn(k) 1= (1 - A)“An(o;x). A nice survey of cardinal polynomial splines can be
found in [7). Micchelli [6] showed that the essential properties of cardinal polynomial
splines can be extended to the more general case of cardinal f[-splines. By applying his

results to the particular differential operator,

n

-
£t(D) 1= | (b~ it), D := ax ! teR

&

|
i

and to the corresponding generalized exponential Euler polynomial

7 n=4 (n ix t
An(xﬂ\.q) = o 2 (=) (1) —g—— y q = e (1.1)
nit i=0 q" =

he analyzed spline interpolation at knots or the biinfinite geometric mesh

(s . (1.2)

In this cage, the generalized Euler-Frobenius polynomial is given by

.SPOnsored by the United States Army under Contract Nos. DAAG29-75-C=0024 and
DAAG29-80-C~0041.

*Supported by Pulbright Grant No. 79=045-A.
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B 1 H n-i/ny T j
T g :=TT (g = DA (0:h,q) =——— ] (=) (PDT1T@-n, (1.3)
1=0 nit i=0 j=0
j#4
and satisfies a "difference-~delay" equation [6]
ﬂo(lxq) =1, (1.4) ‘

(1 - \)qnnn(q-1ltq) - (qn+1 - X)Hn(ktq)): n=0,%... .

1
ﬂn+1(x,q) T (n + 1t

A recent paper by H;llig (S) shows that more general spline interpolation problems on
a biinfinite geometric mesh can be understood in terms of properties of ﬂn(X;q).
The main part of the present paper is an outline of some new characteristics of
nntqu). A simple but far reaching property is the: zeroes un,i(q) are separated by a
factor q. This produces the bounds ;

n=i n~i
q

-const < un'i(q) < -const2 q k

1
for some property chosen const,, const,.
In Section 3, the properties developed are used in an analysis of spline
“Thterpolation Pf to f defined by the conditions

4 Mi'tPf = { LI 2 all i,

on a biinfinite geometric mesh. In this way, some of the results in [5) are obtained by a

different approach.

-2 '
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2, The Zeroces of Hn(xyq)

We start the section with the symmetries of the generalized Euler-Probenius

polynomial. 1In addition to the description (1.3), we shall use

“i' 1 1 1
a_ . (g)” ;= n(xq), Y := v
i=0 n,i Yn(q . 1)n n n nlt"

to emphasize its polynomial character in A.

Theorem 2.1. The polynomial ﬂn(qu) satisfies

T_(Aiq) = x“"q‘“‘“"’/znn(q“x“;q) .

The coefficients ‘n,i(q) can be recurrently computed by

anet, (@ = (@ = 7@ - gy (@) + @ - ey gta)
where
an'o(q) = 1, an’_1(q) = ‘n,n(q) =0 .,

Proof. For n=1 or A =0, (2.1) obviously holds. 2Assume A # 0, n > 2. Then

s ne~irny == 3
Hn(qu) - Yn 2 (=) (i) 11 ta? =)
i=0 j=0

3*4

n - -1 B

vy L @M TT @ -,
1=0 =0
3#1

since the n-th order finite difference of a constant vanishes. But

-1 22 -1 =n(n- I -1
a7 TT ) - ay = @M T (LT,
120 3=0
j*i J#*n=4i

which completes the proof of (2.1).

-3-
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(2.2)
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In terms of the a, i(q)' the recurrence relation (1.4) reads
r

i=0

n
- ‘q-1)-1 z ((qn+1 n=-i 1-i

i=0

if we define an'_1(q) = a, 5(q) := 0, and this confirms (2.2).

Corollary 2.1. The coefficients ‘n,i(q) satisfy

and for n > 2

In particular,

The integer coefficients a

JHin=21-11/2,

a4 () = non-1-4(3) -

i(n=1-1) ()3

(n=i)(n=1-1)/2
4 T

a . (q)=
n,i 4=0
3
i are symmetric

(3) - (i(n~1=-1)-%)
®n,di " %0, '

(
n
all j§ .

0 -1
';,1 = (ni ).

(1 n=1 n=2 n=2
= m- (%) - (5) - (=2) -

n+
"n,i(q) + (q -1)'n,1~1

n-1 n=1
i -1 n -i. 4 n+1 i
I oa,, jtant = «q-n""t0-ng 120 s, yt@aht - @™y 120 a, jtanh)

ant,

(2.3)

(2.4)

(2.5)

(2.6)

It is easy to prove (2.3)~(2.6) by using (2.2) and mathematical induction. We shall

omit this step.

and

real, in fact negative.

They satisfy

un,i(q) <o, (q) <0,

a
dq l“n,:l

lim u (q) = 0, lim p (g) = ==, 511 i
a0+ n,i . n,d ' !

- =

RNVIAE SR . -

From now on we think of the zeroes of ﬂn(';q) as functions of q. It is proved in

{6] that the n = 1 zeroes u 1(q), i=1,.00,n=1, of ﬂn(°;q) are all simple and
’

(2.7)

(2.8)

R R S SR
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(q), all i . {2.9)

(@ =
un,i a un,n-i

We shall think of the uy 1(q) as ordered,
.

un'1(q) < unlz(q) < s un'n_1(q) <0, (2.10)

Then, additionally, by [4) and (2,15) 3

u (q) v L (q)
i—[—£ﬁ-‘£‘—-]<o, CU e VELLLE) IO (2.11) ]
dg q daq qn-1 k
1
4

The symmetry (2.9) tells us that we can restrict our discussion to the case q 2 1.

Lemma 2.1. Let gq > 1. Then

{(q) <y

u (q) ¢ qun 1(q), i=2,3,e0e,n 13 n=2,3,000 = (2.12)
[

n,i-1 n+l, i
Proof. Suppose vy 1_1(q) < qu, i(q) holds for some n. By hypothesis then
rd r
-1
sign(nn(a Aigq)) o sign(un(lxq)) <0, X E€ [qvn'i(q),un'l(q)] '
and from (1.4)
Hn+1(l:q) £0, A€ [q"n,i(Q)’"n,i(q)l . (2.13)
But L 1(q) is a zero of nn(';q), thus another look at (1.4) tells us
’
siqn(ﬂn+1(qun'i(q)tq)) . siqn(nn+1(un"_1(q);q)) <0,
and there is at least one zero of nn+1(';q) in each of the intervals
lun'1_1(q).qun'1(q)l . all 1. (2.14)
Also by (1.4)

sign(nn+1(o+rq)) . sign(ﬂn+1(un'n_1(q):q)) <0,

sign(ﬂn+1(un’1(q);q)) . sign(ﬂn+1(-¢tq)) <0,

and this reveals the position of the smallest and the largest zero of nn+‘(-;q). However,

n H('lq) is a polynomial of degree < n + 1, and in each of the intervals (2.14) there

is exactly one zero, (q).

un#i,i
Now (2.15) brings the induction hypothesis to the next level and (2.12) is proved

since it obviously holds for n = 2. |

It is easy to deduce the following interesting properties of ”n 1(q).
’

B
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3 Corollary 2.2. The zeroes Yy 1(q) of nn('xq) have the following properties
¢ r

j n
1 un,i(q) . un,n-i(q) =q, all i . (2,15)
3 In particular
1 X
3 uzk'k(q) =~ , (2.16)
i n -1
. and for 4 < |[= |
n=-i i
un,i(q) < =q ’ un,n-i(q) > ~q , (2.17)
as well as
u . (q)
4 [—Eli——] >0, all i. (2.18)

. dg n

q

Proof. By (2.1)
M (Aiq) = 0 iff Hn(qn/hq) =0 .

» Since we have ordered un i(q) as in (2.10), (2.15) follows. (2.16) is a special case of
L ’

(2.15). From (2.15) and (2.12) we find

-2 o
n-2i 2 Q@ ., r

n
a = l"n,:l(q)“\'l,n--j.(q) >aq un,n-i
which implies (2.17). Finally, combining (2.1S) and (2.7) we obtain (2.18). [ ]
Theorem 2.2. Let q > 1. Then for i = 1,2,..., IL%.lJ .
: n-1 n-i
! ~c,9 < un'i(q) < €59 ' (2.19)
1 i 1 i
. < un,n-i(q) < o q (2.20)
2 1
the constants Cyr Co do not depend on q and i, and
_ §
cy = lun'1(1)| ’ (2.21) 3
3 B2l n oa
1<¢c,. € . (2.22)
2
. n+ 2
). n-g3 ' N even
- Proof. It is enough to prove (2.19), since (2.20) follows from it by (2.15). Observe from
-1 4
(2.91) that u_ (q) > u_ {1)q" '+ Then by Lemms 2.1 .
n,1! n,1
; \

.
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u_ @)
' n,1 N n-i _ __ n=i
Mp,il9) 2 e M, 110 9

and the left inequality is proved.

Since L i(c&)/q“.1 is a continvous function on [1,®] and satisfies (2.17), while
’

by Theorem 2.4

U
n n -3
nm—ni-%.-T,

q* q

there obviously exists a constant 1 < c2 € min n ; i independent g such that the right 7
i
inequality of (2.19) holds. In particular note that 1 ¢ <, < ;—%—T for n=2k - 1. [ |

Theorem 2.2 bounds {q) as functions of q. However, it is of interest also to

n,i

ask the opposite question: suppose v 1(;) = un i 1(q). What can we say about gq, 5? We
’ i

believe its answer is beautiful enough to deserve its place in the paper.

Theorem 2.3. There exists a constant, const ¢ 1 so that, for any g, ; or 1,

(2.23)

U, =@

implies

% € const < 1.

~ q
Proof. Let q, g satisfy (2.23) for some i, Then (2.18) gives us

g n ay" = g n LA
(~) < (_) s, g := a solution of (_) = ;—‘—(;-
q q a n,i=17

=: oi(q) .

The function pi(q) is a continuous function of q, and by Lemma 2.1 and (2.9)

Thus 91(0*) = Di(') = 0, Clearly we find

T TN ST WRAWIIE ¢ 3 g e e



const = max max pi(q) <1,
i q

The last part of this section we devote to the asymptotic behavior of vy (q) as
’

i

q + ™,

Theorem 2.4. For 41 = 1,2,..., [2—2-1],

n-i n-i - nej-
-—;—- c

un'ilq) = - n,i

i~1 2

i i i i-
Myt (@ =7 -Ta ¢ (n = 1) €y,49  *Old ) .

1

5 (n - 20)% + (61 - 1)(n - 21)°
2+ Nm-Nn-1+1

+ 44(31 - 1)(n - 20 + 41%(21 - 1)(n - 20)] .
In particular,

(2x - 1)3
Ktk = N3k + 1)

Cox-1,k=1 =

Proof. By (2.15) it is enough to prove (2.24). Let ) = un 1(q). By (2.8) and (2.15)
u [
Lim -2t w9, a11 1.
q** q

Thus for some a # 0 and some r > 0

A = aqn-r . Bqn-r-l + o(qn-r-z) . (2.28)

Since the coefficients an,i(q) are polynomials in q, and after a proper normalization
in 1/q, r 4is an integer. From Corollary 2.1 we conclude that as q + =

n=1

i (1) 4 ¢
z an'i(q)A b a

0), i-1
a +an'iia B)) . (2.29)

“g' (M) (n=1=0) /26 (nor) g
1=0 1m0

)ci+ -1(

.(0
n,i n,i

An inspection of the exponent




i

.
'~ -

P(i,x) = (n+ 1)(n =1 =1)/2 + (n -~ r}i
shows
w(z_m_-_zu+ i,z) = ‘,,(2_('1_-_;)_‘1 - i),
A1w(i,r) 3= P(1 + 1,r) = YWi,r) =n=-r-~4i-~-1.
Since A1W(n ~-r=1,r) = 0, the leading power of a occurs in the terms i =n ~-r = 1,
n - r. Thus (2.29) can vanish precisely for r = 1,2,¢e.,n - 1 as q * *, and we

i

conclude from (2.10): (q) = o(qn- ). By using (2.6) it is now straightforward to

un,i

complete the proof. [ |




3. Polynomial Splines on a Biinfinite Geometric Mesh

j To start more generally, let ¢t := (ti):: be a strictly increasing biinfinite LY

sequence with tt“ := ii:: ti' I := ]t_w,t’ol. Let further

msn t(1) = {fe cn-z(I) 8} Lb(I)'fl is a polynomial of degree < n}
'—

Tttt

i+1

be the normed linear space of polynomial splines of order n with the breakpoint
sequence t and the norm HIfl := sup [£(x){. Let r,k € N be given integers,

xel
0 <r <2k, 0 ¢ ke Consider the map

o
Rr : mszk-r’E(I) * 2, £ (oi,rf)-“ (3.1)

associated with interpolation conditions

X

by of = £lE), ¢ £ := { M £, r>0.

Here, as usual the B-splines of order k with knots t are defined by

M, (x) := k[ti,t

1k IFCTELATATIOR AL S

1
Nie =5 (B = &M

ik * ‘]

4o
The interpolation problem: for given b := (bi)i--n €L, find f ¢ SZk-t.g(I) such that

REf=D

is by {2] correct, if R, is invertible, i.e. the Gramian (totally positive) matrix

+0

G = (&g Ny oker)y,jm-e

is boundedly invertible.

4
Let us restrict ourselves now to a particular geometric knot sequence ¢t := (qi)_,

for some q € 10,*(. In this case the matrix is a Toeplitz matrix and is boundedly

invertible iff the characteristic polynomial

b
§ A0, oMy, 2ker

has no zero on the unit circle |A|l = 1, or since G, is totally positive, at A = =1, .

The cagse r = 0 1is treated in [6), where it is proved that

-10=-
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2k=2

H = j =
Lg-y i@ jzo A Ooke1,0M5,2x

2k-1-1 ¢ .3
A g Aoy, 0Ny, 2k

and from properties of the generalized Fuler-Frobenius polynomial determined when Ry is
invertible. A nice argument shown to us by de Boor [3) leads to the conclusion:

The characteristic polynomial (3.2) has ~1 as a zero iff

(= 1 354
2k=1'"

for any r, 0 < r € 2k - 1. A recent regult of Hollig [5) states

n 1q) =0

r
M-qa 1)

-1
lGr , = ht(q)

r
Toxeq (-9 1)

He proves that hr(q) is bounded independently of ¢q and Gyr ¥ # kX - 1,k is not
boundedly invertible for at least one q ¢ [1,®[. We give here an alternative proof by
simply rereading Theorem 2.2. By Theorem 2.1 we can restrict to the cagse 0 < r<k - 1.

' The equation

X
ni(q) = ni,k,r(q’ 1= uzk_1'1(q)/q = =1 (3.5)

has (at least one) solution q € 10,®[ exactly for r + 1 € 41 € 2x - 2 - r. Put

o := {qlg is a solution of (3.5)}

and 'Qr| 1= number of elements in Qr' Choose r + 1 < { <k -1, Then

P teya
ST < € - 0TV, g1,

-Cc >

1
(3.6)

~1 _er+i -1 _~r+i
c, a < n(q) € -c, ’ q <

If q > 1 obviously there is no solution to (3.5) since this would imply 1 » 2k ~ r. 1In

the case gq € 1 there is q € Qr exactly for i > r + 1. Since

(1/q) = -

na) = -1 aff n,

our claim is confirmed.

We note that the case of a finite-partition [1]) suggests that R, r #k - 1,k is not

' invertible for all g, but as already pointed out in [2] the same proof can not he applied

since the quotients

-11=-
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are bounded independently of q.

Let now g » 1. From (2.15) we get

k
2k=2 |1g =, . .(q) k=1 w (q) + 1
M) = b gt = T T |—Eld Ty A (3.7)
=1 g + oy, (@] =1 T
with
v (q) 1= =(u (@) +u (@/tg* + &7 . (3.8)
19 2x-1,1'9 2k=1,2k-1-1"9
From Theorem 2.2 we conclude
- k k=1=1 =1 ~k+1+4
v, (q) := '“21:-1,1“”/‘! >w.lq) ? (eyg +c,4q /2 = w (q)
and
- ;1;1“‘) +1 ket w (a) + 1
(@) = | | = Sh _.(qa) <h_ (a) :=1]| -— .
Bt st (@ -1 X Beet =1 4yl =1

Since gk_1(q) is decreasing as a function of q, this suggests that hk_1(q) is too.

However, we succeeded in proving this only as q * ®, as a consequence of Theorem 2.4 and

(3.7), (3.8).

Theorem 3.5, For 0 < r € 2k = 1, the Gramian matrix G, is not boundedly invertible for
- > - - < - 1.

9€¢Q., and |Qt| 'QZk-1-r| 2(k ~1-1r), 0¢r<k~-1, In particular,

19! = 1Q,_,| = 0, ana the norm hy(q) for a e [1,°[ satisfies

2(k=1)

- c, * 1
B (q) < b (q) < b la) < ["z - ,} (3.9)
also as q + »
h (@) = (2K = 1)(1 + a(k=2)/(k+1)a” ' + Olq™2)) . (3.10)

-12e-

v i T




ERLTE R

IR e Sy o

us in understanding of spline functions, and also lead to this paper.
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